Retour

Source de francois_meria.sty

Fichier STY
%% Informations générales
\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{francois_meria}
 
%% Chargement des extensions
\RequirePackage{latexsym}
\RequirePackage{amsfonts}
\RequirePackage{amsmath}
\RequirePackage{amssymb}
\RequirePackage{amsthm}
\RequirePackage[cyr]{aeguill}
\RequirePackage{fancybox}
\RequirePackage{lastpage}
\RequirePackage{geometry}
\geometry{ hmargin=1.5cm, vmargin=1.5cm }
\RequirePackage{fancyhdr}
\RequirePackage{multicol,multirow}
\RequirePackage{enumerate}
\RequirePackage{array}
\RequirePackage{eurosym}
\RequirePackage{tabularx}
\RequirePackage{color}
 
\usepackage{pst-all,pst-eucl}
\usepackage{calc}
\usepackage{xlop}
 
\RequirePackage[french]{babel}
\RequirePackage[latin1]{inputenc}
\RequirePackage[T1]{fontenc}
 
\newcommand{\V}{\overrightarrow}
\def\euro{\mbox{\raisebox{.25ex}{{\it =}}\hspace{-.5em}{\sf C}}~}
% pour avoir le symbole euro : \euro
% Ensembles R, C, N et D
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\D}{\mathbb{D}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\diff}{\textrm{d}}
\newcommand{\e}{\textrm{e}}
% Repère (O,i,j)
%usage : \RE
\newcommand{\RE}{(O~;~\V{i},~\V{j})}
% Repère (O;u,v)
\newcommand{\RC}{(O~;~\V{u},~\V{v})}
% un autre repère (O;i,j)
\newcommand{\REP}{\mbox{$\left(O,\vec{\imath},\vec{\jmath}\right)$}}
% un autre repère (O;u,v)
\newcommand{\REPB}{\mbox{$\left(O,\vec{u},\vec{v}\right)$}}
\newcommand{\cad}{c.-à-d.}
\newcommand{\ie}{\textit{i.e.}}
 
\theoremstyle{definition}
\newtheorem{definition}{Définition}%[section]
\newtheorem{activite}{Activité}
\newtheorem{theoreme}{Théorème}%[section]
\newtheorem{remarque}{Remarque}%[section]
\newtheorem{consequence}{Conséquence}[section]
\newtheorem{corollaire}[theoreme]{Corollaire}
\newtheorem{lemme}[theoreme]{Lemme}
\newtheorem{proposition}[theoreme]{Proposition}
\newtheorem{exemple}{Exemple}%[section]
\newtheorem{propdefi}[definition]{Proposition-définition}
\newtheorem*{notation}{Notation}
\newtheorem{propriete}[theoreme]{Propriété}
\newtheorem{exercice}{Exercice}%[section]
\newtheorem{methode}{Méthode}
\newtheorem{q}{Question}
\renewcommand{\floatpagefraction}{.9}
\renewcommand{\textfraction}{.1}
 
% QCM, structure et utilisation : \QCM{Question}{Réponse A}{Réponse B}{Réponse C}
\newcommand{\QCM}[4]{
    \begin{tabular}[t]{p{13cm}c}
    #1 & \psset{xunit=1 cm}
    \begin{pspicture}(-0.3,0)(1.5,0.5)
    \pspolygon(0,0)(1.5,0)(1.5,-.5)(0,-.5)
    \psline(.5,0)(.5,-.5) \psline(1,0)(1,-.5)
    \uput[90](0.25,0){A}  \uput[90](0.75,0){B} \uput[90](1.25,0){C}
    \end{pspicture} \\
    A : #2 \qquad B : #3 \qquad C : #4 & \\
    \end{tabular}}
% Exo
\newcounter{nexo}
\setcounter{nexo}{0}
\newcommand{\exo}{
    \stepcounter{nexo}
    {\textbf{$\triangleright$ Exercice \arabic{nexo} :}}
}
% Utilisation de cet environnement : \begin{questiions} \item ... \end{questions}
\newenvironment{questions}{\begin{enumerate}[1 $\, \diamond$]}{\end{enumerate}}
 
% La fameuse \trou de Olivier K qui remplace un mot par un trou de la meme taille
\def\m@th{\mathsurround=0pt}
\def\trou#1{
    \setbox0=\hbox{\textbf{#1}} \dp0=0pt \m@th
    \underline{\hbox{\hskip\wd0}}
}
 
% Commandes pour des colonnes et lignes plus épaisses dans les tableaux (suduku notamment)
\newcolumntype{I}{!{\vrule width 1.5pt}} % utilisation : \begin{tabular}{IcIc|}
\newlength\savedwidth
\newcommand\whline{\noalign{\global\savedwidth\arrayrulewidth\global\arrayrulewidth
1.5pt} \hline \noalign{\global\arrayrulewidth\savedwidth}} % util : \whline
 
% figurec : crée un environnement centré avec une légende Fig. 2 paramètres
% Utilisation #1: figure postscript ou includegraphics et #2 : légende.
\newcommand{\figurec}[2]{\begin{figure}[h]\begin{center}#1\end{center}\caption{#2}\end{figure}}
 
% A virer ?
\def\d{$\diamond \,$}
% le symbole de multiplication
\def\*{\times}
% le symbole Euro
\def\Euro{\textgreek{\euro}\ }
% La fameuse \trou de Olivier K qui remplace un mot par un trou de la meme taille
\def\m@th{\mathsurround=0pt}
\def\trou#1{
    \setbox0=\hbox{\textbf{#1}} \dp0=0pt \m@th
    \underline{\hbox{\hskip\wd0}}
}
% Ecriture pour le niveau CP
\newcommand{\ecriture}[1]{
    \pspicture(.5,1)
    \rput(0,-.55) {
        \psline[linewidth=.5pt, linecolor=blue](0,.5)(18,.5)
        \psline[linewidth=.2pt, linecolor=blue](0,.95)(18,.95)
        \psline[linewidth=.5pt, linecolor=blue](0,1.5)(18,1.5)}
    \endpspicture
    {\Huge \cursive #1}
}
% Elle ne set pas souvent mais j'en ai bavé ;o)
\newcommand{\machine}[4]{
        \begin{pspicture}
        \rput(0,0){\rnode{A}{#1}}
        \rput(3,0.11){\rnode{B}{#2}}
        \psset{nodesep=5pt}
        \ncarc[arcangleA=25,arcangleB=25]{->}{A}{B}\mput*{\ovalnode{m}{#3}}
        \ncarc[arcangleA=25,arcangleB=25]{->}{B}{A}\mput*{\ovalnode{d}{#4}}
        \end{pspicture}
        \hskip 3.1cm}
% La fameuse \cylindre de Nicolas Poulain qui permet de dessiner des cylindres !
%\cone NomCentre,affichage,hauteur,rayon,ecrasement
%\cone {A}       {default} {10}     {2}     {0.5}
%\cone {1}       {   2   } {3 }     {4}     { 5 }
\newcommand{\cylindre}[5]{
\pstGeonode[PointSymbol=*,PointName=#2](0,0){#1}
\pstGeonode[PointSymbol=none,PointName=none](10,0){Aamoi}
\pstGeonode[PointSymbol=none,PointName=none](#4,#3){HG}
\pstGeonode[PointSymbol=none,PointName=none](-#4,#3){HD}
\pstGeonode[PointSymbol=none,PointName=none](#4,0){BG}
\pstGeonode[PointSymbol=none,PointName=none](-#4,0){BD}
\pstLineAB{HG}{BG}
\pstLineAB{HD}{BD}
 
\psplot[linestyle=dashed]{-#4}{#4}{#4 2 exp x 2 exp sub .5 exp #5 mul}
\psplot{-#4}{#4}{#4 2 exp x 2 exp sub .5 exp -#5 mul}
\psplot{-#4}{#4}{#4 2 exp x 2 exp sub .5 exp #5 mul #3 add}
\psplot{-#4}{#4}{#4 2 exp x 2 exp sub .5 exp -#5 mul #3 add}
}
 
% La fameuse \cone de Nicolas Poulain qui permet de dessiner des cones !
%\cone NomCentre,affichage,hauteur,NomHauteur,affichage,rayon,ecrasement
%\cone {A}       {default} {10}      {S}      {default} {2}     {0.5}
%\cone {1}       {   2   } {3 }      {4}      {   5   } {6}     { 7 }
\newcommand{\cone}[7]{
\pstGeonode[PointSymbol=*,PointName=#2](0,0){#1}
\pstGeonode[PointSymbol=none,PointName=none](10,0){Aamoi}
\pstGeonode[PointSymbol=none,PointName=none](0,#3){Hsommet}
\pstMiddleAB[PointSymbol=none,PointName=none]{#1}{Hsommet}{Milieuu}
\pstInterCC[PointSymbol=none,PointName=none,RadiusA=\pstDistVal{#6}]{#1}{}{Milieuu}{Hsommet}{Ibidon}{Jbidon}
\pstProjection[PointSymbol=none,PointName=none]{#1}{Aamoi}{Jbidon}{Jbidon'}
\pstProjection[PointSymbol=none,PointName=none]{#1}{Aamoi}{Ibidon}{Ibidon'}
 
\psplot[linestyle=dashed]{-#6}{#6}{#6 2 exp x 2 exp sub .5 exp #7 mul}
\psplot{-#6}{#6}{#6 2 exp x 2 exp sub .5 exp -#7 mul}
\pstHomO[HomCoef=#7,PointSymbol=none,PointName=#5]{#1}{Hsommet}{#4}
\pstHomO[HomCoef=#7,PointSymbol=none,PointName=none]{Jbidon'}{Jbidon}{T1}
\pstHomO[HomCoef=#7,PointSymbol=none,PointName=none]{Ibidon'}{Ibidon}{T2}
\pstLineAB{#4}{T1}
\pstLineAB{#4}{T2}
}
 
% La fameuse \Rapporteur de Nicolas Poulain qui permet de dessiner ... quoi ???
\newcommand{\rapporteur}{
\SpecialCoor
\pscircle{5}
\multido{\i=0+1}{181}{\psline(5;\i)}
\pscircle[fillcolor=white,fillstyle=solid,linestyle=none]{4.5}
\multido{\i=0+10}{19}{\psline(5;\i)}
\pscircle[fillcolor=white,fillstyle=solid,linestyle=none]{4}
\pscircle[fillcolor=white,fillstyle=solid]{3}
\psframe[fillcolor=white,fillstyle=solid,linestyle=none](5,-5.1)(-5,-1.75)
\pscircle[fillcolor=white,fillstyle=solid]{.5}
\psframe[fillcolor=white,fillstyle=solid](-5,-1.75)(5,0)
\psline[linecolor=white](-.5,0)(.5,0)
\psline[linecolor=white](-3,0)(-4,0)
\psline[linecolor=white](3,0)(4,0)
\pscircle[fillcolor=white,fillstyle=solid]{.05}
\NormalCoor
}
 
% Ca peut toujours servir un petit carré ! (Merci Ahmed Kadi)
\newcommand{\smallbox}{
    \begin{pspicture}(.5,.5)
    \pspolygon(0,0)(.25,0)(.25,.25)(0,.25)
    \end{pspicture}}
% Vec (Merci Ahmed Kadi)
\renewcommand{\vec}[1]
{\mathord{\setbox0\hbox{$#1$} \mathop{\smash{#1}\setbox1\copy0\ht1 0.8\ht0
\vphantom{\copy1}\mskip0.8\thinmuskip}
\limits^{\hbox to\wd0{$\mskip0.8\thinmuskip$\rightarrowfill}}\mskip-0.8\thinmuskip}}
 
% une commande de Marc Moretti
\newcommand{\system}[2]{
\left\{
\begin{array}{l}
#1\\
#2
\end{array}
\right.
}
 
% Pour écrire facilement des intervalles
\newcommand{\interv}[2]{$\left[#1~;~#2\right]$}
 
%Pour écrire des points facilement.
\newcommand{\point}[3]{$#1\left(#2~;~#3\right)$}
 
%
%Pour utiliser des programmes de calcul de la forme ax+b ; ax-b ; ax         %
%avec calcul litteral, calcul et résolution                                  %
%
%Macro pcaxplusblitteral
%#1 : nom du programme de calcul
%#2 : a
%#3 : b
\newcommand{\pcaxplusblitteral}[3]{\shadowbox{
\begin{minipage}[c]{0.4\textwidth}
\begin{center}\psset{unit=0.5cm}
    \pspicture(-1.5,-0.8)(11,1.3)
    \psline{->}(1.2,0)(4.2,0) \psline{->}(6.4,0)(9.4,0)
    \put(2,0.5){$\begin{array}{c} \times #2 \\ \end{array}$}
    \put(7.2,0.5){$\begin{array}{c} + #3 \\ \end{array}$}
    \psline[linestyle=dotted](4.4,-0.4)(6.2,-0.4)
    \psline[linestyle=dotted](9.6,-0.4)(11.4,-0.4)
    \put(0.2,-0.2){$x$}
    \put(5,-0.2){$#2x$}
    \put(9.5,-0.2){$#2x+#3$}
    \put(-1.6,-0.2){$#1~:$}
    \endpspicture
    \end{center}
\end{minipage}
}}
 
%Macro pcaxplusbcalcul
%#1 : nom du programme de calcul
%#2 : a
%#3 : b
%#4 : valeur de x
\newcommand{\pcaxplusbcalcul}[4]{\shadowbox{
\begin{minipage}[c]{0.4\textwidth}
\begin{center}\psset{unit=0.5cm}
    \pspicture(-1.5,-0.8)(11,1.3)
    \opcopy{#2}{a}
    \opcopy{#3}{b}
    \opcopy{#4}{x}
    \opmul*{a}{x}{c}
    \opadd*{c}{b}{d}
    \psline{->}(1.2,0)(4.2,0) \psline{->}(6.4,0)(9.4,0)
    \put(2,0.5){$\begin{array}{c} \times #2 \\ \end{array}$}
    \put(7.2,0.5){$\begin{array}{c} + #3 \\ \end{array}$}
    \psline[linestyle=dotted](4.4,-0.4)(6.2,-0.4)
    \psline[linestyle=dotted](9.6,-0.4)(11.4,-0.4)
    \put(0.2,-0.2){$#4$}
    \put(5,-0.2){$\opprint{c}$}
    \put(10,-0.2){$\opprint{d}$}
    \put(-1.6,-0.2){$#1~:$}
    \endpspicture
    \end{center}
\end{minipage}
}}
 
% fin de la macro
 
%Macro pcaxmoinsblitteral
%#1 : nom du programme de calcul
%#2 : a
%#3 : b
\newcommand{\pcaxmoinsblitteral}[3]{\shadowbox{
\begin{minipage}[c]{0.4\textwidth}
\begin{center}\psset{unit=0.5cm}
    \pspicture(-1.5,-0.8)(11,1.3)
    \psline{->}(1.2,0)(4.2,0) \psline{->}(6.4,0)(9.4,0)
    \put(2,0.5){$\begin{array}{c} \times #2 \\ \end{array}$}
    \put(7.2,0.5){$\begin{array}{c} - #3 \\ \end{array}$}
    \psline[linestyle=dotted](4.4,-0.4)(6.2,-0.4)
    \psline[linestyle=dotted](9.6,-0.4)(11.4,-0.4)
    \put(0.2,-0.2){$x$}
    \put(5,-0.2){$#2x$}
    \put(9.5,-0.2){$#2x-#3$}
    \put(-1.6,-0.2){$#1~:$}
    \endpspicture
    \end{center}
\end{minipage}
}}
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Macro pcaxmoinsbcalcul
%#1 : nom du programme de calcul
%#2 : a
%#3 : b
%#4 : valeur de x
\newcommand{\pcaxmoinsbcalcul}[4]{\shadowbox{
\begin{minipage}[c]{0.4\textwidth}
\begin{center}\psset{unit=0.5cm}
    \pspicture(-1.5,-0.8)(11,1.3)
    \opcopy{#2}{a}
    \opcopy{#3}{b}
    \opcopy{#4}{x}
    \opmul*{a}{x}{c}
    \opsub*{c}{b}{d}
    \psline{->}(1.2,0)(4.2,0) \psline{->}(6.4,0)(9.4,0)
    \put(2,0.5){$\begin{array}{c} \times #2 \\ \end{array}$}
    \put(7.2,0.5){$\begin{array}{c} - #3 \\ \end{array}$}
    \psline[linestyle=dotted](4.4,-0.4)(6.2,-0.4)
    \psline[linestyle=dotted](9.6,-0.4)(11.4,-0.4)
    \put(0.2,-0.2){$#4$}
    \put(5,-0.2){$\opprint{c}$}
    \put(10,-0.2){$\opprint{d}$}
    \put(-1.6,-0.2){$#1~:$}
    \endpspicture
    \end{center}
\end{minipage}
}}
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
%Macro pcaxplusbresolution résolution de ax+b=c
%#1 : nom du programme de calcul
%#2 : a
%#3 : b
%#4 : valeur de c
\newcommand{\pcaxplusbresolution}[4]{\shadowbox{
\begin{minipage}[c]{0.4\textwidth}
\begin{minipage}[c]{0.4\textwidth}
\begin{center}\psset{unit=0.5cm}
    \pspicture(-1.5,-0.8)(11,1.3)
    \psline{->}(1.2,0)(4.2,0) \psline{->}(6.4,0)(9.4,0)
    \put(2,0.5){$\begin{array}{c} \times #2 \\ \end{array}$}
    \put(7.2,0.5){$\begin{array}{c} + #3 \\ \end{array}$}
    \psline[linestyle=dotted](4.4,-0.4)(6.2,-0.4)
    \psline[linestyle=dotted](9.6,-0.4)(11.4,-0.4)
    \put(0.2,-0.2){$x$}
    \put(5,-0.2){$#2x$}
    \put(9.5,-0.2){$#2x+#3$}
    \put(-1.6,-0.2){$#1~:$}
    \endpspicture
    \end{center}
\end{minipage}
 
\vskip 0.3cm
 
\begin{minipage}[c]{0.4\textwidth}
\begin{center}\psset{unit=0.5cm}
    \pspicture(-1.5,-2.7)(11,1.3)
    \opcopy{#2}{a}
    \opcopy{#3}{b}
    \opcopy{#4}{c}
    \opsub*{c}{b}{k}
    \opdiv*[period,decimalsepsymbol={,}]{k}{a}{q}{r}
    \psline{<-}(1.2,0)(4.2,0) \psline{<-}(6.4,0)(9.4,0)
    \put(2,0.5){$\begin{array}{c} \div #2 \\ \end{array}$}
    \put(7.2,0.5){$\begin{array}{c} - #3 \\ \end{array}$}
    \psline[linestyle=dotted](4.4,-0.4)(6.2,-0.4)
    \psline[linestyle=dotted](9.6,-0.4)(11.4,-0.4)
    \put(-0.2,-0.2){$\boxed{\dfrac{\opprint{k}}{\opprint{a}}}$}
    \put(5,-0.2){$\opprint{k}$}
    \put(10,-0.2){$\opprint{c}$}
    \put(-1.6,-0.2){$#1~:$}
    \put(0.2,-1.8){La valeur de la solution}
    \put(0.2,-2.5){(peut-être approchée) est $\opprint{q}$.}
    \endpspicture
    \end{center}
\end{minipage}
\end{minipage}
}}
 
%
%Macro pcaxmoinsbresolution résolution de ax-b=c
%#1 : nom du programme de calcul
%#2 : a
%#3 : b
%#4 : valeur de c
\newcommand{\pcaxmoinsbresolution}[4]{\shadowbox{
\begin{minipage}[c]{0.4\textwidth}
\begin{minipage}[c]{0.4\textwidth}
\begin{center}\psset{unit=0.5cm}
    \pspicture(-1.5,-0.8)(11,1.3)
    \psline{->}(1.2,0)(4.2,0) \psline{->}(6.4,0)(9.4,0)
    \put(2,0.5){$\begin{array}{c} \times #2 \\ \end{array}$}
    \put(7.2,0.5){$\begin{array}{c} - #3 \\ \end{array}$}
    \psline[linestyle=dotted](4.4,-0.4)(6.2,-0.4)
    \psline[linestyle=dotted](9.6,-0.4)(11.4,-0.4)
    \put(0.2,-0.2){$x$}
    \put(5,-0.2){$#2x$}
    \put(9.5,-0.2){$#2x-#3$}
    \put(-1.6,-0.2){$#1~:$}
    \endpspicture
    \end{center}
\end{minipage}
 
\vskip 0.3cm
 
\begin{minipage}[c]{0.4\textwidth}
\begin{center}\psset{unit=0.5cm}
    \pspicture(-1.5,-2.7)(11,1.3)
    \opcopy{#2}{a}
    \opcopy{#3}{b}
    \opcopy{#4}{c}
    \opadd*{c}{b}{k}
    \opdiv*[period,decimalsepsymbol={,}]{k}{a}{q}{r}
    \psline{<-}(1.2,0)(4.2,0) \psline{<-}(6.4,0)(9.4,0)
    \put(2,0.5){$\begin{array}{c} \div #2 \\ \end{array}$}
    \put(7.2,0.5){$\begin{array}{c} + #3 \\ \end{array}$}
    \psline[linestyle=dotted](4.4,-0.4)(6.2,-0.4)
    \psline[linestyle=dotted](9.6,-0.4)(11.4,-0.4)
    \put(-0.2,-0.2){$\boxed{\dfrac{\opprint{k}}{\opprint{a}}}$}
    \put(5,-0.2){$\opprint{k}$}
    \put(10,-0.2){$\opprint{c}$}
    \put(-1.6,-0.2){$#1~:$}
    \put(0.2,-1.8){La valeur de la solution}
    \put(0.2,-2.5){(peut-être approchée) est $\opprint{q}$.}
    \endpspicture
    \end{center}
\end{minipage}
\end{minipage}
}}
 
\newcommand{\pcaxlitteral}[2]{\shadowbox{
\begin{minipage}[c]{0.4\textwidth}
\begin{center}\psset{unit=0.5cm}
    \pspicture(-1.5,-0.8)(11,1.3)
    \psline{->}(1.2,0)(9.4,0)
    \put(4.5,0.2){$\begin{array}{c} \times #2 \\ \end{array}$}
    \psline[linestyle=dotted](9.6,-0.4)(11.4,-0.4)
    \put(0.2,-0.2){$x$}
    \put(10,-0.2){$#2x$}
    \put(-1.6,-0.2){$#1~:$}
    \endpspicture
    \end{center}
\end{minipage}
}}
 
\newcommand{\pcaxcalcul}[3]{\shadowbox{
\begin{minipage}[c]{0.4\textwidth}
\begin{center}\psset{unit=0.5cm}
    \pspicture(-1.5,-0.8)(11,1.3)
    \opcopy{#2}{a}
    \opcopy{#3}{x}
    \opmul*{a}{x}{c}
    \psline{->}(1.2,0)(9.4,0)
    \put(4.5,0.2){$\begin{array}{c} \times #2 \\ \end{array}$}
    \psline[linestyle=dotted](9.6,-0.4)(11.4,-0.4)
    \put(0.2,-0.2){$\opprint{x}$}
    \put(10,-0.2){$\opprint{c}$}
    \put(-1.6,-0.2){$#1~:$}
    \endpspicture
    \end{center}
\end{minipage}
}}
%%%%%%%%%%%
 
\newcommand{\pcaxresolution}[3]{\shadowbox{
\begin{minipage}[c]{0.4\textwidth}
\begin{minipage}[c]{0.4\textwidth}
\begin{center}\psset{unit=0.5cm}
    \pspicture(-1.5,-0.8)(11,1.3)
    \psline{->}(1.2,0)(9.4,0)
    \put(4.5,0.2){$\begin{array}{c} \times #2 \\ \end{array}$}
    \psline[linestyle=dotted](9.6,-0.4)(11.4,-0.4)
    \put(0.2,-0.2){$x$}
    \put(10,-0.2){$#2x$}
    \put(-1.6,-0.2){$#1~:$}
    \endpspicture
    \end{center}
\end{minipage}
 
\vskip 0.3cm
 
\begin{minipage}[c]{0.4\textwidth}
\begin{center}\psset{unit=0.5cm}
    \pspicture(-1.5,-2.7)(11,1.3)
    \opcopy{#2}{a}
    \opcopy{#3}{c}
    \opdiv*{c}{a}{q}{r}
    \psline{<-}(1.2,0)(9.4,0)
    \put(4.5,0.2){$\begin{array}{c} \div #2 \\ \end{array}$}
    \psline[linestyle=dotted](9.6,-0.4)(11.4,-0.4)
    \put(-0.3,-0.2){$\boxed{\dfrac{\opprint{c}}{\opprint{a}}}$}
    \put(10,-0.2){$\opprint{c}$}
    \put(-1.6,-0.2){$#1~:$}
    \put(0.2,-1.8){La valeur de la solution}
    \put(0.2,-2.5){(peut-être approchée) est $\opprint{q}$.}
    \endpspicture
    \end{center}
\end{minipage}
\end{minipage}
}}
 
\newcommand{\pcxplusaresolution}[3]{\shadowbox{
\begin{minipage}[c]{0.4\textwidth}
\begin{minipage}[c]{0.4\textwidth}
\begin{center}\psset{unit=0.5cm}
    \pspicture(-1.5,-0.8)(11,1.3)
    \psline{->}(1.2,0)(9.4,0)
    \put(4.5,0.2){$\begin{array}{c} + #2 \\ \end{array}$}
    \psline[linestyle=dotted](9.6,-0.4)(11.4,-0.4)
    \put(0.2,-0.2){$x$}
    \put(10,-0.2){$x+#2$}
    \put(-1.6,-0.2){$#1~:$}
    \endpspicture
    \end{center}
\end{minipage}
 
\vskip 0.3cm
 
\begin{minipage}[c]{0.4\textwidth}
\begin{center}\psset{unit=0.5cm}
    \pspicture(-1.5,-2.7)(11,1.3)
    \opcopy{#2}{a}
    \opcopy{#3}{c}
    \opsub*{c}{a}{d}
    \psline{<-}(1.2,0)(9.4,0)
    \put(4.5,0.2){$\begin{array}{c} - #2 \\ \end{array}$}
    \psline[linestyle=dotted](9.6,-0.4)(11.4,-0.4)
    \put(-0.3,-0.2){$\boxed{\opprint{d}}$}
    \put(10,-0.2){$\opprint{c}$}
    \put(-1.6,-0.2){$#1~:$}
 
    \endpspicture
    \end{center}
\end{minipage}
\end{minipage}
}}
%
%% Fin du package
\endinput